首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151026篇
  免费   131541篇
  国内免费   650篇
  2018年   9849篇
  2016年   13752篇
  2015年   19124篇
  2014年   22437篇
  2013年   32097篇
  2012年   36018篇
  2011年   36365篇
  2010年   24674篇
  2009年   23111篇
  2008年   32713篇
  2007年   33690篇
  2006年   31545篇
  2005年   30434篇
  2004年   30082篇
  2003年   28907篇
  2002年   28161篇
  2001年   51139篇
  2000年   51538篇
  1999年   40858篇
  1998年   14649篇
  1997年   15512篇
  1996年   14608篇
  1995年   14067篇
  1994年   13884篇
  1993年   13715篇
  1992年   34531篇
  1991年   33359篇
  1990年   32612篇
  1989年   31689篇
  1988年   29275篇
  1987年   28243篇
  1986年   26136篇
  1985年   26167篇
  1984年   21783篇
  1983年   18764篇
  1982年   14664篇
  1981年   13186篇
  1980年   12542篇
  1979年   20900篇
  1978年   16592篇
  1977年   15090篇
  1976年   14053篇
  1975年   15343篇
  1974年   16645篇
  1973年   16323篇
  1972年   14733篇
  1971年   13653篇
  1970年   11743篇
  1969年   11081篇
  1968年   10096篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.  相似文献   
32.
Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other species occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution.  相似文献   
33.
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.  相似文献   
34.
35.
36.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   
37.
Botrytis allii andCollectotrichum dematium are onion pathogens which can infect in the field and cause decay in storage. Some phenolics can hinder development of these fungi, but the effect of cytokinins is not clear. Cytokinins (kinetin or 6-benzyladenine) or phenolics (caffeic or chlorogenic acids) were added to agar at concentrations of 0 to 10–3 M. Cultures were continuously irradiated with fluorescent light or maintained in the dark for 6 days. On unamended media, final mycelial elongation was 45 or 17.8 mm and sporulation was 28 or 10.6 × 104 spores/ml forBotrytis andColletotrichum, respectively. ForBotrytis, mycelial elongation was slightly (5%) but significantly increased and sporulation increased by 21% by incubation on phenolics as compared to cytokinins. Mycelial extension ofColletotrichum was not affected by amendment. Sporulation ofColletotrichum on kinetin was 16 to 28% greater than on the other amendments. As amendments concentration increased elongation of mycelia of both fungi decreased. Sporulation ofBotrytis increased by 60% as amendment concentration increased from 0 to 10–5 M and then decreased 25% at 10–3 M. As amendment concentration increased from 0 to 10–3 M, sporulation ofColletotrichum increased by 45%. Incubation in light increased mycelial extension 3 to 17% forBotrytis andColletotrichum respectively, and sporulation was increased approximately 78% for both fungi. These compounds do not appear to inhibit development of theseBotrytis orColletotrichum species in culture.  相似文献   
38.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

39.
40.
Abstract: The glial fibrillary acidic protein (GFAP) content was investigated using immunoblotting techniques in the septum and hippocampus of the rat after bilateral lateral fimbria transection. Seven days after surgery GFAP content increased significantly both in the septum (140% of control) and hippocampus (120% in dorsal, the less denervated, and 145% in the most denervated ventral part), indicating the occurrence of reactive gliosis. The GM1 treatment caused statistically significant attenuation of GFAP increment in all hippocampal parts. In contrast, GM1 treatment has no influence on the increase of GFAP content in the septum. Results suggest a differential effect of GM1 on the two gliotic reactions formed as a consequence of the lesion at the level of the source of innervation (septum) and the target (hippocampus).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号